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Abstract In this work, we have studied a single molecule enzyme catalysis reaction
in presence of oscillatory substrate concentration. The stochastic kinetics is mod-
elled in terms of a chemical master equation. Depending on the oscillation frequency,
hysteresis can occur in the system which is dynamic in nature. The time-dependent
driving keeps the system out-of-equilibrium associated with dissipation. The interplay
between the timescales of the system kinetics and the external driving necessitates the
splitting of the total entropy production rate into adiabatic and nonadiabatic contribu-
tions. Analyses of these quantities give insights into the various balance conditions of
the reaction fluxes and their roles in governing the nonequilibrium thermodynamics of
the system. Interestingly, the net velocity of catalysis and the dissipation along with its
various parts are found to exhibit hysteresis that vanish in the low and high-frequency
ranges of substrate oscillation. However, the average (over a period) velocity as well
as the average dissipation show hyperbolic increase with frequency to saturation. We
have proposed an experimental protocol to realize such features using periodic step-
wise injection of substrate at specified rates.

Keywords Stochastic enzyme kinetics · Dissipation · Dynamic hysteresis

1 Introduction

Advent of single molecule spectroscopic techniques has revolutionized the field of
chemical kinetics by revealing the details, at least, at the mesoscopic scale [1–7].
Progress in this direction not only added a new dimension to the experimental field
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[8] but also rekindled interest in the theoretical treatment [9–11]. The latter primarily
involves the stochastic theory of chemical reactions [12,13]. This is mainly based on
the chemical master equation (CME) [14,15] where the concentrations are replaced by
the corresponding probabilities of population states [16]. The approach has been devel-
oped over the years [17,18], with its significance now growing rapidly as experimental
realizations come into light. Comparison of the bulk kinetics, governed by determin-
istic rate equations, with the stochastic occurrence of reaction events, described by
the CME, provides valuable insights into the special features of reactions of small
systems and inside tiny volumes, e.g., inside a living cell [19,20]. In this context,
enzyme catalysis remains an attractive choice as a reaction system having tremendous
biological importance [21]. The seminal Michaelis–Menten (MM) reaction scheme
[22] still holds a key place as the reference frame for all the theories going beyond its
limitations. The validity of the MM kinetics in the stochastic domain has been tested
in terms of the variables of single molecule experiments that also furnish data giving
deeper knowledge of reaction mechanism [23].

The stochastic approach is not only applied to kinetics but also to the corresponding
thermodynamics [24–27]. Construction of nonequilibrium thermodynamics in terms
of master equation as a self-consistent theory is an active area of research [28–31]. The
link with reaction systems comes in the form of nonequilibrium steady state (NESS)
[32], attained by the system in presence of sustained driving [33]. In a NESS, detailed
balance is broken (satisfied in equilibrium) and a positive dissipation exists (vanishes in
equilibrium), although the concentrations (or probabilities) become fixed in time [34].
In the case ofMMkinetics, such aNESS can be achieved by assuming the chemiostatic
condition where the substrate and product concentrations are kept constant by suitable
inflowand outflow, respectively [35,36]. For a single enzymemolecule, this is no doubt
valid over the course of the experiment, even for a low substrate concentration, say in
the µM range. Such considerations allow one to proceed analytically and express the
single molecule data and results in compact forms [10].

With this background, here we investigate the stochastic kinetics and the thermody-
namics of single molecule enzyme catalysis going beyond the chemiostatic condition.
This is obtained by making the substrate concentration oscillatory, periodic to be
specific. We clarify that, the single enzyme molecule ‘sees’ a time-varying substrate
concentration [S](t) which is realized by some external mechanism and is not due
to the catalysis reaction itself. This time-dependent driving keeps the system out-of-
equilibrium. In the long-time limit, the properties of the system also become periodic
with the same period of the driving. Interestingly, the net velocity of catalysis as well
as the dissipation, characterized by the total entropy production rate (EPR) [37], show
hysteresis loops as a function of [S](t) in the long-time limit. The loop area is a mea-
sure of such hysteresis which is dynamic [38,39], i.e., generated in time due to the
periodic driving. Recently, such kind of feature is shown to occur in ion channels for
a range of frequencies of the external driving [40]. However, for such a system, in
absence of time-dependent driving, equilibrium is reached. This is unlike our case
where, even for fixed [S] (and [P]) representing constant driving, the system attains
NESS. In this work, we also get a similar aspect of vanishing hysteresis in the low
and high-frequency limits of substrate oscillation; this is found to be true both for
velocity and dissipation. The interplay between the time-scales of system’s intrinsic
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relaxation and external driving begs for a deeper understanding of the mechanism
behind dissipation. To this end, we analyze the recently introduced concepts of adi-
abatic and nonadiabatic contributions to the total EPR [41]. They are also found to
exhibit similar hysteresis loops against [S](t) along with the vanishing loop area in
the limiting conditions. However, the average, over a period, of all the quantities in the
long-time limit increase to saturationwith rising frequency of substrate oscillation.We
also discuss about a feasible experimental protocol to realize such dynamic hysteresis
features.

2 Single enzyme catalysis with oscillatory substrate input

We consider here the catalytic reaction of a single enzyme molecule having a single
substrate binding site. At any instant of time, the enzyme can be in the free (unbound)
state, E or in the substrate-bound state, ES with some probability. The reaction scheme
is written following the MM kinetics

E + S
k

′
1�

k−1
ES

k−2�
k

′
2

E + P

where the rate constant k
′
2 is introduced only to avoid the divergence of total EPR

(and not from any kinetic mechanistic viewpoint). The value of k
′
2 is taken to be very

small (but greater than zero). Hence, its contribution to the reaction kinetics as well
as thermodynamics is negligible.

The kinetics can be further simplified by taking the substrate and product concen-
trations as fixed. This is the well-known chemiostatic condition with suitably chosen
influx and efflux of S and P, respectively, that leads the reaction system to a NESS
instead of equilibrium. The above reaction scheme then reduces to

E
K1�
K2

ES. (1)

Here, K1 = (k
′
1[S]+ k

′
2[P]) = (k1 + k2) is the total formation rate constant of ES and

K2 = (k−1+k−2) is its total dissociation rate constant. It is to be noted that, in a closed
system, the depletion of substrate concentration from its initial value, even say in µM
range, by a single enzyme molecule is only slight and results in the pseudo-first order
kinetics. However, the latter case is thermodynamically distinct although kinetics is
identical.

Now, we consider the substrate concentration to be oscillatory: [S](t) = [S]0 +
[S]asin22πνt with effective frequency 4πν. This may be experimentally realized
with stepwise injection of substrate at a periodically varying rate which can create an
environment of oscillatory substrate concentration around the single enzymemolecule.
Increase in the number of such of steps should better match the continuous case, as
will be shown letter. The effective first-order rate constant gets modified as k1(t) =
k

′
1[S](t). The stochastic enzyme kinetics is described in terms of the following CME
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∂P(n, t)

∂t
=

±2∑

μ=±1

[
wμ(n − νμ, n)(t)P(n − νμ, t) − w−μ(n, n − νμ)(t)P(n, t)

]
.

(2)
Here, P(n, t) is the probability to find the enzyme in state-n (=0,1) at time t; n =
0 means the free enzyme state, E and n = 1 is the bound enzyme state, ES. The
stoichiometric coefficient of the μ-th reaction is denoted by νμ and the corresponding
rate constant by kμ. νμ = 1 for μ = 1, 2 and νμ = −1 for μ = −1,−2. Then,
the transition rates from state-(n − νμ) to state-n become wμ(0, 1)(t) = kμ(t) for
μ = 1, 2 and wμ(1, 0)(t) = kμ(t) for μ = −1,−2. Actually, except w1(0, 1)(t),
all the other transition rates are time-independent. The net velocity of catalysis is
expressed in terms of the state probabilities as

vnet(t) = k−2P(1, t) − k2P(0, t) = (k−2 + k2)P(1, t) − k2. (3)

The solution of Eq. (2) is given by

P (1, t) = P (1, t0) exp

[
−

∫ t

t0
K (t

′
)dt

′
]

+
∫ t

t0
K1(t

′
) exp

[
−

∫ t

t ′
K (t

′′
)dt

′′
]
dt

′
(4)

where K (t) = K1(t) + K2. Using Eq. (4), for mT < t < (m + 1)T , P(1, t) can be
written as [40]

P (1,mT + t) = P (1,mT ) exp

[
−

∫ t

mT
K (t

′
)dt

′
]

+
∫ t

mT
K1(t

′
) exp

[
−

∫ t

t ′
K (t

′′
)dt

′′
]
dt

′
, (5)

where T is the time period of the oscillating substrate concentration and m(=
0, 1, 2, . . . .) is the number of such periods. From Eq. (4), a recursion relation can
be constructed

P(1, (m + 1)T ) = φP(1,mT ) + Δ0, (6)

where φ and Δ0 are given by

φ = exp

[
−

∫ T

0
K (t)dt

]
(7)

and

Δ0 =
∫ T

0
K1(t

′
) exp

[
−

∫ T

t ′
K (t

′′
)dt

′′
]
dt

′
. (8)

From Eq. (6), one gets

P(1,mT ) = φm P(1, 0) + 1 − φm

1 − φ
Δ0, (9)
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where P(1, 0) is the initial probability. The asymptotic value of P(1,mT ) is obtained
at the limit m → ∞ as

lim
m→∞ P(1,mT ) = Δ0

1 − φ
. (10)

Substituting Eq. (10) into Eq. (5), we obtain in the long-time limit (denoted by
superscript ‘ss’)

Pss(1, t) = lim
m→∞ P(1,mT + t) = Δ(t)

1 − φ
. (11)

where

Δ(t) =
∫ t+T

t
K1(t

′
) exp

[
−

∫ t+T

t ′
K (t

′′
)dt

′′
]
dt

′
. (12)

Now, one can proceed further with Eq. (11) and inspect the limiting conditions of low
and high frequency [40].

2.1 Low-frequency limit

At very low frequency with T → ∞, φ in Eq. (7) vanishes. Therefore, Pss(1, t) in
Eq. (11) can be written as

Pss (1, t) =
∫ T

0
K1(t − t

′
) exp

[
−

∫ t
′

0
K (t − t

′′
)dt

′′
]
dt

′
. (13)

As K1 and K are slowly-varying functions of time, one can take the following approx-
imations

K1(t − t
′
) ≈ K1 (t) − t

′
K̇1(t

′
), K (t − t

′′
) ≈ K (t) − t

′′
K̇ (t

′′
)

and

exp

[
−

∫ t
′

0
K (t − t

′′
)dt

′′
]

≈
(
1 + 1

2
K̇ (t)t

′2
)
exp

[
−K (t)t

′]
. (14)

Neglecting the term proportional to the product K̇1(t)K̇ (t), we obtain

Pss(1, t) ≈ Pst(1, [S]t ) − Ṗst(1, [S]t )
K (t)

, (15)

where Pst(1, [S]t ) = K1([S]t )
K ([S]t ) , corresponds to the steady state the system would reach

if the substrate concentration were frozen at time t, at the value [S]t . For very slow
variation of [S](t), the system can always follow the change without lagging. One can
then safely neglect the second term in the r.h.s. of Eq. (15) leading to

Pss(1, t) = Pst(1, [S]t ), ν → 0. (16)
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Actually, wewill get the same steady state solution as in Eq. (16) startingwith constant
substrate concentration value [S]t [16]. The superscript ‘st’ in Pst(1, [S]t ) denotes
this fact and distinguishes the situation from the general time-dependent substrate
concentration case (with superscript ‘ss’).

2.2 High-frequency limit

In the high frequency limit with T → 0, φ in Eq. (7) can be written as

φ = 1 − T 〈K (t)〉. (17)

Here 〈(...)〉 = 1
T

∫ T
0 (...)dt denotes average over a period. Then, Pss(1, t) in Eq. (11)

takes the form

Pss (1, t) = 1

T 〈K (t)〉
∫ t+T

t
K1

(
t
′)

exp

[
−

∫ t+T

t ′
K

(
t
′′)

dt
′′
]
dt

′
. (18)

Taking the following approximation

exp

[
−

∫ t+T

t ′
K

(
t
′′)

dt
′′
]

≈ 1 −
∫ t+T

t ′
K

(
t
′′)

dt
′′
, (19)

Eq. (18) can be written as

Pss(1, t) = 〈K1(t)〉
〈K (t)〉 − ξ

∫ t+T
t K (t ′)dt ′

(20)

with ξ = ∫ t+T
t K1(t

′
)(

∫ t+T
t ′ K (t

′′
)dt

′′
)dt

′
. The limit t

′
varies in the range, t ≤ t

′ ≤
t + T and t

′′
varies in the range, t

′ ≤ t
′′ ≤ t + T . As T → 0, one can approximate

(
∫ t+T
t ′ K (t

′′
)dt

′′
) as (T + t − t

′
)K (t ′) where 0 ≤ (T + t − t

′
) ≤ T . This makes

ξ ≈ T
∫ t+T
t χ(t

′
)K(t

′
)dt

′ → 0 in this limit. Thus, finally we obtain

Pss(1) = 〈K1(t)〉
〈K (t)〉 , ν → ∞. (21)

For very fast substrate oscillation, the system completely fails to sense the variation
and fills only the average effect. So at ν → ∞, Pss(1) becomes independent of time.

2.3 Detailed and circular balance conditions

Before going into the details of stochastic thermodynamics of the system, we point
out how the (net) fluxes associated with the reaction steps are related to each other.
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Under the chemiostatic condition, with [S] (and [P]) fixed, the system reaches NESS
where we have

w1(0, 1)P
st(0, [S]t ) − w−1(1, 0)P

st(1, [S]t ) =
w−2(1, 0)P

st(1, [S]t ) − w2(0, 1)P
st(0, [S]t ) 	= 0. (22)

The equality in Eq. (22) implies the fulfillment of what is known as the circular balance
(CB) condition [42] whereas, the inequality corresponds to the violation of the detailed
balance (DB) condition. The latter holds at equilibrium when the inequality becomes
equality. In our case, it will occur when k1k−2

k−1k2
= 1. We will subsequently show that,

in presence of oscillatory substrate concentration, the CB condition gets broken too.

3 Stochastic thermodynamics of MM kinetics under periodic driving

Entropy of the reaction system can be written in terms of the state-probabilities as [41]

Ssys(t) = −
∑

n

P(n, t)lnP(n, t), (23)

where the Boltzmann constant is set at kB = 1. From Eq. (2), the system EPR can be
split into total and medium contributions [43]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (24)

They are defined as

Ṡtot(t) = 1

2

∑

n,μ

[
wμ(n − νμ, n)P(n − νμ, t) − w−μ(n, n − νμ)P(n, t)

]

× ln
wμ(n − νμ, n)P(n − νμ, t)

w−μ(n, n − νμ)P(n, t)
≥ 0 (25)

and

Ṡm(t) = 1

2

∑

n,μ

[
wμ(n − νμ, n)P(n − νμ, t) − w−μ(n, n − νμ)P(n, t)

]

× ln
wμ(n − νμ, n)

w−μ(n, n − νμ)
. (26)

This is the traditional way of looking into the 2nd law in irreversible thermodynamics.
Recently, another division of the total EPR into adiabatic and nonadiabatic contri-

butions is shown to have fundamental importance regarding fluctuation theorems [29].
This division is particularly relevant when DB is not satisfied, as in our case, even with
fixed [S] (and [P]). Now, it will be interesting to study the case when the substrate
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concentration also varies periodically with time. The interplay between the inher-
ent timescale of system kinetics and the timescale of external driving also demands
investigation of the adiabatic and nonadiabatic contributions to the total EPR.

Following Esposito et al. [41], the total EPR can be expressed as a sum of adiabatic
and nonadiabatic parts as

Ṡtot(t) = Ṡa(t) + Ṡna(t) (27)

where

Ṡa(t) = 1

2

∑

n,μ

[
wμ(n − νμ, n)P(n − νμ, t) − w−μ(n, n − νμ)P(n, t)

]

× ln
wμ(n − νμ, n)Pst(n − νμ, [S]t )

w−μ(n, n − νμ)Pst(n, [S]t ) (28)

and

Ṡna(t) = 1

2

∑

n,μ

[
wμ(n − νμ, n)P(n − νμ, t) − w−μ(n, n − νμ)P(n, t)

]

× ln
P(n − νμ, t)Pst(n, [S]t )
P(n, t)Pst(n − νμ, [S]t ) . (29)

We now study the system in the long-time limit in the two limiting conditions, ν → 0
and ν → ∞.

In the low-frequency limit, it is easy to see from Eq. (16) and Eq. (29), that Ṡssna = 0
and thus Ṡssa (t) = Ṡsstot(t). For ν → 0, Pst(1, [S]t ) = K1([S]t )

K1([S]t )+K2
; then, from Eq. (28),

one gets

Ṡssa ([S]t ) = (
k1P

st(0, [S]t ) − k−1P
st(1, [S]t )

)
ln

k1Pst(0, [S]t )
k−1Pst(1, [S]t )

+ (
k2P

st(0, [S]t ) − k−2P
st(1, [S]t )

)
ln

k2Pst(0, [S]t )
k−2Pst(1, [S]t ) , for ν → 0.

(30)

From the circular balance condition, Eq. (22), we have

k1P
st(0, [S]t ) − k−1P

st(1, [S]t ) = k−2P
st(1, [S]t ) − k2P

st(0, [S]t ). (31)

Using Eq. (31) along with Pst(0, [S]t ) = (1 − Pst(1, [S]t )), Eq. (30) reduces to

Ṡssa ([S]t ) =
(
k1([S]t )k−2 − k−1k2

K1([S]t ) + K2

)
ln

(
k1([S]t )k−2

k−1k2

)
= Ṡsstot([S]t ), for ν → 0.

(32)
One can see that for k1([S]t )k−2

k−1k2
= 1, which corresponds to the DB condition for the

enzyme catalysis at ν → 0 [see the discussion in Sect. 2 after Eq. (22)], Ṡsstot([S]t ) = 0
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as should be the case. In all other situations, Ṡsstot([S]t ) > 0 and the reaction system
remains out-of-equilibrium.

In the high-frequency limit, the state probabilities become independent of time as
given in Eq. (21). Using Eq. (21) and Eq. (28), the adiabatic EPR in the long-time
limit becomes

Ṡssa (t) =
[(

k1(t)K2 − k−1〈K1(t)〉
〈K1(t)〉 + K2

)
ln

(
k1(t)K2

k−1K1([S]t )
)

+
(
k2K2 − k−2〈K1(t)〉

〈K1(t)〉 + K2

)
ln

(
k2K2

k−2K1([S]t )
)]

, for ν → ∞. (33)

The corresponding nonadiabatic EPR is given by

Ṡssna(t) =
(
K2(K1(t) − 〈K1(t)〉)

〈K1(t)〉 + K2

)
ln
K1([S]t )
〈K1(t)〉 , for ν → ∞. (34)

Then, it follows that

Ṡsstot(t) =
[(

k1(t)K2 − k−1〈K1(t)〉
〈K1(t)〉 + K2

)
ln

(
k1(t)K2

k−1〈K1(t)〉
)

+
(
k2K2 − k−2〈K1(t)〉

〈K1(t)〉 + K2

)
ln

(
k2K2

k−2〈K1(t)〉
)]

, for ν → ∞. (35)

Before ending this section, we make an important observation regarding the CB
condition in Eq. (31). If we assume that Eq. (31) still holds in the ν → ∞ limit,
it leads to the relation Pss (0)

Pss (1) = K2
K1(t)

. Now, this can not be true as the l.h.s. of this
relation is independent of time in this limit whereas, the r.h.s. is time-dependent. So,
the CB condition must also be broken. This gives an understanding about the role
of time-dependent substrate input. As the chemiostatic condition breaks the DB, the
periodic oscillation disrupts the CB. Although, we are in the ν → ∞ limit, actually
CB is broken for any finite ν. When CB holds but DB is broken, as in a NESS with
constant [S], the total (and adiabatic) EPR is positive but the nonadiabatic EPR is zero
in the long-time limit. Breaking of CB due to time-dependent external driving leads
to a non-zero nonadiabatic EPR, as shown in Eq. (34). In the next section, numerical
analysis of the single enzyme catalysis at various intermediate substrate oscillation
frequencies will make these points more clear and robust.

4 Results and discussion

The numerical analysis of Eq. (2) is performed using the Heun’s algorithm (time-step
10−5s) with the following parameters: k

′
1 = 0.15µM−1s−1, k−1 = 7.0 s−1, k−2 =

2.0 s−1, k2 = 10−6 s−1, [S]0 = 100µM, [S]a = 50µM. We show the net velocity
of product formation, as a function of time and also as a function of [S](t) over a
period, for various oscillation frequencies in Fig. 1 in the long-time limit. Comparison
of vssnet(t) dynamics at low and high frequencies (see Fig. 1a, b) indicates that as
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t(t
)>

ss

1.345

1.355

Fig. 1 a, b Dynamics of net velocity vssnet(t) in the long-time limit for different substrate oscillation
frequencies ν. c Dynamic hysteresis in the vssnet(t) − [S](t) loops generated by plotting data over a period
for various ν values. d The average (over a period) net velocity, 〈vssnet(t)〉 as a function of ν

the frequency rises, the amplitude of oscillation of vssnet(t) attenuates. This becomes
particularly clear for ν = 10 s−1 and ν = 100 s−1, shown in Fig. 1b. This is due to the
fact that at ν → ∞, the state probabilities ultimately become time-independent and
this gets reflected in the dynamics of the net velocity [see Eqs. (3) and (21)]. Now,
plotting vssnet(t) as a function of [S](t) over a period at different frequencies generates
loops of varying area as shown in Fig. 1c. At low frequencies such as ν = 0.01 s−1

as well as at high frequencies such as ν = 100 s−1, the loop area almost vanishes
whereas at intermediate frequency values, like ν = 1 s−1 and ν = 10 s−1, significant
loop structures are present. This phenomenon is a signature of dynamic hysteresis
where the loop area of the concerned plot passes through a maximum as a function of
the driving frequency. We have also shown the average (over a period) net velocity,
〈vssnet(t)〉 as a function of ν in Fig. 1d. 〈vssnet(t)〉 first rises and then saturates as ν is
increased. However, as evident from Fig. 1d, the average varies little over a large range
of frequency.

We find similar type of behavior for the average total EPR 〈Ṡsstot(t)〉 as shown in
Fig. 2a. It rises with ν and finally saturates, following the same trend as that of the
net velocity. It also shows dynamic hysteresis as a function of [S](t) (see Fig. 2c); the
hysteresis disappears in the limiting conditions, too. The amplitude of oscillation of
Ṡsstot(t) gets reduced at higher frequencies like in the case of net velocity. Medium and
system EPR also exhibit similar dynamic hysteresis behavior as shown in Fig. 2b, d,
respectively. Only two curves are shown for the medium EPR for clarity. From Fig.
2d, we can see that the amplitude of oscillation of Ṡss(t) as a function of ν follows
the opposite trend compared to that of Ṡsstot(t). This is because, at low frequencies the
state of the system changes very slowly; as the system entropy is a state function, so
Ṡss(t) lies close to zero. As ν increases, Ṡss(t) starts to oscillate with higher amplitude.
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Fig. 2 a Plot of 〈Ṡsstot(t)〉 as a function of ν. b–d Dynamic hysteresis in the loops of medium, total and
system EPRs, plotted as a function of [S](t) for different νs

[S](t)

16
100 150 100 150

[S](t)

0

0.3

ν (s-1)

0 50 100 0 50 100

ν (s-1)

0

0.15

0.01 s-1

0.1 s -1
1 s -1

10 s-1
100 s -1

1 s-1

10 s-1

100 s-1

0.1 s-1

S a
ss

(t
)

.

S na
 (

t)
ss.

<S
na

 (
t)

>
ss.<S
ass

(t
)>

.

(a) (b)

(c) (d)

17.73

17.83

20

Fig. 3 a, b Dynamic hysteresis in adiabatic and nonadiabatic EPRs as a function of [S](t) over a period
for different ν values in the long-time limit. c, d The corresponding averages as a function of ν

However, the average of Ṡss(t) over a period is zero for any ν, again it being a state
function.

Next, we have shown the corresponding plots for the adiabatic and nonadiabatic
EPRs in Fig. 3. Both the quantities show dynamic hysteresis. The Ṡssa (t) − [S](t)
loops look quite similar to those of Ṡsstot(t) except the fact that the former is more
symmetric, particularly at high frequencies (see Fig. 3a). The total EPR is thus mainly
governed by the adiabatic contribution. The nonadiabatic EPR Ṡssna(t) is almost zero
at low frequencies, like ν = 0.1 s−1 as shown in Fig. 3b. With rising ν, it develops
a two-loop structure as a function of [S](t) and the two [S](t) values where Ṡssna(t)
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theoretical results are denoted as ‘continuous’. Increase in the step-number results in better reproduction of
the theoretical prediction for a net velocity, b total EPR, c adiabatic EPR and d nonadiabatic EPR

becomes zero shifts in such a way that they approach each other with increasing
frequency. Actually at ν = 100 s−1, these two points have almost merged at [S] =
125µM−1s−1, the mean substrate concentration. We also observe that, the overall
shape of the Ṡssna(t) − [S](t) loops are asymmetric around this point and this causes
the asymmetry in the Ṡsstot(t) − [S](t) loops. The amplitude of oscillation of Ṡssna(t)
increases with ν as the driving is the source of nonadiabaticity. We have also plotted
the corresponding averages in Fig. 3c, d. They also show the pattern already observed,
i.e., the initial rise with frequency to a final saturation.

4.1 Practical implementation of the scheme

The effects produced due to oscillatory substrate concentration can be experimentally
realized with periodic stepwise injection of substrate as already mentioned in Sect. 1.
The hysteresis plots, generated at various range of frequencies, are expected to repro-
duce the continuous case with better accuracy as the number of such steps comprising
a full cycle of concentration oscillation are increased. In Fig. 4, we show that this is
indeed the case, by considering a high-frequency scenario with μ = 100 s−1 where
theory predicts vanishing hysteresis. As the number of steps rises from 20 to 100,
the discrete hysteretic responses of all the quantities are found to match the theoreti-
cally predicted continuous curves better. This can be tested, obviously most easily, by
following the product formation rate in the long-time limit.

5 Conclusion

We have explored the stochastic kinetics of a single enzyme molecule following MM
scheme in presence of periodic substrate input. The time-dependent driving keeps the
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system in a nonequilibrium state with positive dissipation. The interaction between the
system and driving time-scales is investigated in terms of the adiabatic and nonadia-
batic parts of dissipation, i.e., the total EPR. Unlike in a NESS with broken DB, which
is realized for constant [S] and [P], the periodic [S](t) also breaks the CB condition in
the long-time limit. The violation of CB results in a positive nonadiabatic EPR. This
is equivalent to the breaking of DB in NESS that produces positive total EPR, coming
entirely from the adiabatic contribution.

Interestingly, oscillatory substrate concentration generates dynamic hysteresis not
only in the net velocity of catalysis but also in the associated dissipation. Various
parts of the total EPR, viz., the system, medium, adiabatic and nonadiabatic EPR
individually exhibit such a feature in the intermediate frequency range. In the low
and high-frequency limits, the hysteresis in all these quantities are found to disappear.
However, their averages (over a period) in the long-time limit are found to rise with
frequency to saturation (except system EPR whose average over a period is zero). In
case of net velocity, this is analogous to the traditional hyperbolic curve as a function
of [S]. Finally, we propose an experimental scheme to verify these theoretical features
with periodic stepwise addition of substrate at different rates.
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